
REVIEW

The nasal cycle: a comprehensive review*

Abstract 
Background: The nasal cycle is the spontaneous, reciprocal congestion and decongestion of the nasal mucosa during the day 

and it is present in almost 70-80% of healthy adults. The German physician Richard Kayser first described it in 1895. Since then, the 

number of papers focused on this fascinating issue has continued to flourish. 

Main body: Even though there are a high number of publications on this topic, the understanding of nasal cycle is still very poor. 

The present review tries to offer a comprehensive analysis of this issue investigating all the physiologic and pathologic conditions 

able to modify the nasal cycle. A section of methods used for its evaluation has been also included in this review.

Conclusion: The influence of the nasal cycle on nasal airflow must be considered during any rhinologic evaluation, especially if 

investigating the need for septal/turbinates surgery, rather than nasal medical therapy alone. The nasal cycle is a normal pheno-

menon and must be recognized in order to differentiate it from the pathologic causes of nasal obstruction. 
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Introduction
The nasal cycle (NC) is the spontaneous congestion and decon-

gestion of the nasal mucosa during the day, where congestion 

of one side is accompanied by reciprocal decongestion of the 

contralateral side (Figure1). It is based on the dilation/constric-

tion of the venous cavernous tissue in the submucosa of the 

turbinates and septum(1), but also of the ethmoid sinuses(2).

It is accepted that almost 70-80% of adults experience a regular 

NC, but a true periodicity/reciprocity exists only in 21-39% of the 

population (3,4). NC is considered an ultradian rhythm of side-to-

side nasal mucosal engorgement with a phase length ranging 

from 30 min to 6h (5). As first described, in an ideal cycle, the two 

air passages should show reciprocal changes of equal amplitu-

de, 180° out of phase, with an identical period and similar mean 

airflow, with total nasal flow remaining constant(6). Anyway, a NC 

so described is barely found, because at least one of these three 

characteristics is not fulfilled(7). This paper presents a review of 

the literature with the aim to offer an organized presentation 

issue.

Literature search and selection
A PubMed database search was conducted until March 2018. 

The initial search yielded a total of 199 publications, published 

from January 1953 to March 2018. The term "nasal cycle" was 

used as key word in the title or in the abstract using PubMed 

advanced search. References were screened for further relevant 

articles. We excluded papers not written in English, German, 

French, Spanish or Italian (n=15) and letters to the editor (n=3). 

After an initial reading of the abstract, articles considered not 

relevant to the topic were excluded (n=60). A further 11 papers 

were added after a manual search, while 9 papers were excluded 

after a full text revision. Finally, 123 papers were considered for 

Abbreviations: NC: nasal cycle; MRI: magnetic resonance imaging; AR: acoustic rhinometry; AAR: anterior active rhinomanometry; NAR: nasal airway 

resistances
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the review. ALP and EN performed the PubMed research and the 

revision of the papers.

Hypothesis on NC role
First Wright(8) and subsequently other authors(4,9-10) thought NC 

was involved in the production of nasal secretions. Periodic 

congestion and decongestion of the nasal venous sinusoids in 

the context of a NC, in fact, acts as an active pumping mecha-

nism to form a plasma exudate(11-12). NC probably exists because 

of the need to top up the water percentage of the nasal mucus, 

maintaining humidification of inspired air(13). Eccles was the first 

to link the NC with a role in respiratory defence(14). Plasma is rich 

in immunoglobulins and proteins involved in the generation of 

inflammatory mediators, components important in the defence 

against infection. During nasal infection, the NC increases its 

amplitude and frequency, and this may enhance the generation 

of plasma exudate(15-16). White suggested that the NC enables 

the upper airway to accommodate the contrasting roles of air 

conditioning (heating and humidifying of the inhaled air) and 

removal of entrapped contaminants, through fluctuation in 

airflow. An efficient transport of entrapped inhaled pathogens 

and pollutants requires low air velocities and sustained airway 

surface liquid hydration to be carried out by the congested side 

of the nose. Conversely, the patent side experiences high air 

velocities causing recurring severe airway surface liquid dehy-

dration that leads to humidification and temperature regulation 

of the inhaled air(17).

It has also been hypothesised that the NC allows local accumula-

tion of nitric oxide (NO), which has an important role in modula-

ting epithelial function and antimicrobial features(18). 

According to another hypothesis, the NC reflects the dynamic 

lateralisation of the autonomic nervous system (ANS), with sym-

pathetic activity induced by left brain hemisphere stimulation 

and parasympathetic activity induced by right hemisphere sti-

mulation(19-20). In fact, forced unilateral nostril breathing induces 

selective contralateral hemispheric stimulation(21) as well as alter-

nating lateralisation of plasma catecholamines production(22).

The NC, as an example of lateralised autonomic function, and as 

part of lateralised neural rhythms, can be considered an integral 

part of the hypothesis of the basic rest-activity cycle which 

reflects the needs of any organism to rest and save energy(23-25).

Patterns
Classically, four types of NC have been described with frequen-

cies reported for each pattern often discordant. The "non-cycle 

nose" was first described in 1981 meaning a nose which does 

not exhibit cyclic nasal airflow changes(26). More recently, using 

acoustic rhinometry (AR), Alnselmo-Lima and Lund tried to 

define more precisely four types of NCs(27): 

• Classic (reciprocal congestion/decongestion alterations and 

a constant total volume); 

• Parallel (congestion or decongestion appearing in both 

nasal cavities at the same time);

• Irregular (mutual alteration in nasal volume without a de-

fined pattern and a constant total nasal volume); 

• No pattern (total nasal volume and nasal volume in each 

nostril do not differ).

NC patterns may transform from one to another in the same 

subject(27), with patterns' shifts that could be influenced by 

environmental or physical factors(28). Although it was reported 

that the reciprocal changes in unilateral airflow are present in 

the majority of subjects(29), in a recent work a parallel pattern was 

observed in half of the subjects, while the other half showed a 

reciprocal pattern(30).

Independently of the type of pattern, individuals usually are not 

aware of their NC.

NC control
Congestion and decongestion of the nasal venous cavernous tis-

sue is under the control of the ANS(31-33). Nasal venous sinusoids 

have a dense adrenergic innervation(34), and stimulation of these 

fibres causes the release of noradrenaline, which results in vaso-

constriction and in a reduction of nasal airway resistances (NAR)
(35). Physiologically, there is a sympathetic tone at the level of the 

nasal venous sinusoids and the transection or a local anaesthe-

sia of the cervical sympathetic nerves evokes ipsilateral nasal 

congestion(36). High spinal cord injury (>T1) is associated with 

immediate loss of the NC, which appears to slowly recover with 

time(37). Selective block of the stellate ganglion is able to alter the 

NC of the homolateral side, leading to a swelling of the inferior 

concha accompanied by a pronounced increase of NAR, with a 

moderate rise of NAR in the contralateral side(38). 

The central regulation of the sympathetic activity at the level 

of the nose is not completely understood. Hypothalamus has 

been suggested to be the central controller(39,40). In 1983, Eccles 

Figure 1. Example of nasal cycle measured by means of Peak Nasal 

Inspiratory Flow measurements over a period of 7 hours [in red the right 

nostril (rPNIF), in blue the left nostril (lPNIF)].
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Physiology of NC (Table1)
1. Age

Usually NC is not present at birth or it is quite rare(51,52). The exact 

period when NC appears is not known, but it could occur with 

the change from obligate to facultative nasal breathing. Once 

appeared, NC changes with age. Children show shorter cycles 

than in adults, with smaller amplitude of fluctuation in the lat-

ter. The mechanism for the age-related change of the NC is not 

clear, but it seems that the maturation of the ANS during the 

years may explain it(36,53). Mayer found a NC in 79% of children 

aged 7-10 years and in 50% of children aged 3-6 years(54). Child-

ren showed to have a regular pattern of fluctuations of the NAR, 

with fluctuations happening in phase(55). Fisher evaluating NC 

in children found classic pattern to be the predominant one(56). 

In contrast Gallego found that the irregular pattern was the 

most frequent pattern in children, hypothesising that the im-

mature central control of the NC may explain the passage from 

an irregular pattern to a classical one with time(57). With aging, 

peripheral factors [i.e.changes in the vascular elasticity of the 

nasal epithelium)(58)] and central factors (alterations in central 

brain mechanisms) may induce changes in NC(59,60). Therefore, 

the alternating rhythmicity associated with the NC decreases 

with age(59,61).

2. Sleep

It seems that there is a correlation between sleep stages and 

hypothesised that reciprocal changes in sympathetic tone may 

be regulated by a "central rhythm" of nervous activity and by 

sensory input of the nasal mucosa, while in phase changes 

may be caused by a loose coupling between groups of nasal 

vasomotor neurons and respiratory neurons(32). Recently, the 

same group proposed a control model involving a hypothalamic 

centre and two brainstem half centres(29). Bremner showed that 

variations in sympathetic “tone” at the level of the nasal vessel 

are perfectly synchronized with variations at the level of the iris 

muscles, implying that both are under the control of the same 

central oscillator(41).

However, it must be considered that a variety of external stimuli, 

such as exercise(42), arterial pCO
2

(43), emotion(44) and skin tem-

perature changes(45-46), are able to influence the activity of the 

nasal centres(29). Airflow through the nose has been supposed 

to be important in the control of the nasal vasomotor activity(47). 

Nevertheless, studies have shown the presence of the NC even 

in laryngectomized patients, albeit of lower amplitude, in the 

absence of nasal airflow(48-49). Hildebrandt suggested the pres-

ence of a trigger mechanism of the NC linked to the epithelial 

lining fluid. A flip-flop circuit could be triggered through a 

binary signal that can release a set or reset impulse when a 

certain discrepancy between the nasal cavities is constituted in 

regard to the occurrence of wall shear stress and the size of the 

transepithelial potential(50). 

Condition Effect Note

Age Nasal cycle changes with age probably due 
to the maturation of the autonomic nervous 
system(36,53).

Neonates: most of the neonates shows no significant fluctuations in 
nasal patency(51).
Children: shorter cycles than adults with regular pattern of fluctuati-
ons of the nasal resistance(55). 
Adults: classic pattern, with reciprocal congestion/decongestion alte-
rations is the most frequent type reported in literature(53).
Elderly: alternating rhythmicity associated with the nasal cycle decrea-
ses with age(59,61).

Sleep Nasal cycle and sleep stage are correlated(62). Increase in cycle duration with a significant decrease in the rate of the 
reversal of nasal cycle. Most of the spontaneous changes occur during 
REM sleep(63,64). 
Synchronization of nasal and sleep cycles(65).

Posture Lateral recumbency produces nasal cycle chan-
ges(69,72).

Changes of the nasal cycle may coincide with switches in posture 
from supine to lateral decubitus in some cases(66).

Mucociliary clearance Nasal cycle has a marked effect on the mucocili-
ary clearance of the nose(80).

Literature data are controversial on which side the mucociliary clea-
rance is enhanced(80-83).

Exercise Exercise influences nasal cycle(84). In the post-exercise period, spontaneous variations of the nasal cycle 
increase in amplitude(87).

Olfactory perception Difference in nasal airflow results in a disparity of 
olfactory perception(90).

Humidity May affect nasal cycle frequency and ampli-
tude(4).

Oestrogen Oestrogen peak during ovulation is often accom-
panied by nasal congestion, which alters normal 
nasal cycle(93,98).

Table 1. Main physiologic conditions influencing nasal cycle.
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changes in NAR. Kimura observed an increase in NC duration 

during sleep and a decrease in the reversal rate of the NC. In 

84.6% of cases, spontaneous changes of the NC occurred during 

the rapid eye movement (REM) sleep(62). This may be related to 

a strong sympathetic activation during REM phase that shifts to 

a parasympathetic dominance in slow wave sleep(63,64). During 

the night sleep, nasal and sleep cycles may become synchro-

nized, so that NC duration is one or more times the duration of 

the sleep cycle(65). Rohrmeier found that in normal conditions, 

NC period, amplitude and duration are significantly greater 

during sleep than during wakefulness(66). A relationship between 

the rhythms of the NC and sleep stage has been confirmed by 

Frye(67). Recently, Ozturk observed that sleep efficiency, NREM 

stage III, and total sleep duration were greater during left nasal 

obstruction (right nostril dominant respiration), while apnea-

hypopnea-index, frequency of periodic limb movements, and 

oxygen desaturation were higher during right nasal obstruction 

(left nostril dominant respiration)(68). However, NC changes are 

also strictly linked to the posture adopted.

3. Posture 

Posture changes can influence nasal airflow (69-72). The transition 

from sitting to supine causes an increase in central venous 

pressure of up to 8 mmHg due to an increase in hydrostatic 

pressure(73). This leads to an increase in congestion of the nasal 

mucosa and higher NAR independently from the sympathetic 

control due to the NC(74,75). Increased NAR are observed in lateral 

recumbency where the inferior nostril becomes the congested 

side. During sleep, changes in NC may coincide with switches in 

posture from supine to lateral decubitus(62,76). Rohrmeier found 

a phase reversal in the NC after positional shifts in 22% of the 

subjects(66). Positional shifts result in early adjustment of the 

NC, but it soon reverts to its spontaneous pattern if a constant 

position is maintained(66,75). In these changes, positional shifts of 

the entire body, and not only of the head, appear to be the most 

important factor. A corporo-nasal reflex, well known by yogis 

who use it to influence mind-body states, seems to underlie this 

phenomenon(75-77). During postural shifts, the reflex overrides 

the NC inhibiting it temporarily, but when a lateral posture is 

sustained, NC begins again with its phase reverted(78). Hence 

for a subject with a unilateral septal deviation (NSD), the lateral 

recumbency on the narrowest side will render the superior side 

more patent, as a consequence of the corporo-nasal reflex, but if 

this posture is maintained, the recovery of the NC will sponta-

neously reverse NAR. NC and postural reflexes may also, in part, 

explain the breathing disorders during sleep in patients with 

NSD(79).

4. Role of NC in respiratory defence

Although it seems that NC may influence mucociliary clearance 

(MC), data are controversial. A difference of the MC in the two 

phases of the NC was observed, with a faster clearance rate 

when the nasal passage is more patent(80). Conversely, Littlejohn 

stated that MC is enhanced in the congested phase(81), while In-

gels did not find any relation between the ciliary beat frequency 

and the degree of patency(82). Recently, Soane reported MC to 

be greater in the patent side than in the obstructed one(83). The 

variability of the results probably lies in the different methods 

used or on the criteria used to demonstrate that these differen-

ces between nasal passages exist. Sympathetic changes may 

account for the differences in transport rates, but the reason for 

a MC difference during the NC is not yet completely understood.

5. Exercise

Exercise strongly influences nasal airflow(84). The main me-

chanism responsible for the increase in nasal patency during 

exercise is played by the sympathetic nervous system which 

causes a mucosa decongestion with an increase in the nasal 

airway volume(85). The increase in nasal volume is transitory, with 

a greater decline occurring during the first 10 minutes after the 

cessation of exercise and with a return to the resting values of 

nasal volume within 20 minutes after the end of exercise(85-86). 

Hilberg found that in the post-exercise period spontaneous 

variations of the NC are increased in amplitude(87).

6. Other factors 

NC is coupled to an alternating lateralisation of cerebral hemisp-

heric activity in humans(19). It is possible that the hemisphere 

contralateral to the dominant nostril (which has the highest 

sympathetic tone) would have a greater blood flow as a result 

of the simultaneous parasympathetic activation(23). A significant 

relationship between the pattern of nasal airflow and spatial vs. 

verbal performance has also been reported(88-89).

NC was demonstrated to influence olfactory perception: muco-

sal swelling that cyclically obstructs each nostril causes odorants 

to be drawn into the nostrils at different rates(90). Olfaction seems 

not to be influenced by exercise and this can be explained 

by the fact that the active vasoconstriction of nasal mucosa 

demonstrated during physical exercise could also be associated 

with a similar reduction of blood flow to the olfactory cells, thus 

compensating for the higher flow of odorants reaching the 

olfactory cleft(42). In one patient with chronic rhinosinusitis, it has 

been suggested that NC can modify olfactory perception, even 

when there is no major effect on nasal patency(91). 

NC has also been hypothesised to influence eustachian tube 

function and middle ear pressure. However, Knight reported 

that nasal mucosal changes occurring during the NC do not af-

fect the eustachian tube function(92).

Also humidity of the inspired air may affect NC frequency and 

amplitude(4).

No relationship has been found between NAR and skin tempera-

ture although both are controlled by the sympathetic vasocon-
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strictor system(45,46).

Finally, the oestrogen peak during ovulation is often accompa-

nied by nasal congestion, which alters normal NC(93), and it is 

well known that pregnant women often complain of nasal ob-

struction(94). Although oral contraceptive pills (OCP) have been 

reported to negatively influence nasal flow(95), modern OCP have 

no effects on nasal congestion, probably because of the lower 

oestrogen content(96-98).

Pathologic conditions and NC (Table 2)
1. Acute upper respiratory tract infection (URTI)

An increase in the NC amplitude after the inoculation of nasal 

drops containing a Coronavirus was reported(99). The amplitude 

of the spontaneous reciprocal changes in NAR increases during 

URTI, caused by an increased level of unilateral nasal congestion. 

The inflammation of the nasal mucosa in fact causes the vaso-

dilatation of the resistance vessels and then an increased filling 

pressure of the nasal sinusoids, causing congestion only in the 

nostril with the lowest sympathetic tone(100).

2. Allergic rhinitis

Allergic rhinitis strongly influences NC. Huang observed greater 

amplitudes of nasal patency fluctuation in subjects with a 

perennial allergic rhinitis when compared to healthy sub-

jects(101). Nasal allergen provocation testing generally increases 

the amplitude of the NC in allergic rhinitis patients; however, it 

does not alter the occurrence and the period of the NC, which 

remains under the control of the central nervous system(102). The 

maximal NAR increase during the late phase reaction in allergic 

subjects is up to 300%, whereas the maximal increase in controls 

due to NC is less than 100%(103). The obstructive response after 

acute threshold allergen challenge is typically one-sided. The 

side with higher NAR before the challenge responds in most of 

cases with greater obstruction(104,105). When performing nasal 

challenges, we must remember that NC may confound the test 

results. NAR changes must be interpreted with caution, and 

other objective parameters (the nasal secretion amount and the 

sneezes count) should be used in addition(106).

3. Nasal septal deviation

The NC has been found in patients with NSD. When the con-

gestive phase of the NC obstructs the structurally more patent 

side, bilateral obstruction occurs; conversely, in the deconges-

tive phase, obstruction is relieved as the structurally wider side 

returns to being more patent(79,107). Sung showed that the ampli-

tude of the minimal cross-sectional area changes was greater in 

the wider than in the narrower side, but no differences in terms 

of NC occurrence rate and mean duration were noted, sugges-

ting that the generation of the NC is relatively independent from 

peripheral anatomic factors(108).

4. Other pathologies 

Disturbance of the parasympathetic and sympathetic nerves 

supplying the nasal mucosa has little influence on the NC, which 

is often preserved(109). Conversely, section of the right cervical 

sympathetic nerve abolishes the NC(110,111).

One study evaluated the relation between autism and the NC 

concluding that patients with autism had no normal NC, as a 

consequence of an almost continuous left unilateral forced 

nostril breathing(112). In addition, a NC has been found to have 

lower frequency in patients with Parkinson’s disease suggesting 

that the mechanism controlled by the sympathetic system can 

exhibit autonomic dysfunction or hypofunction(113).

The NC has also been studied in patients with OSAS: during 

n-CPAP breathing, both nasal airways experience an elicited 

geometric pressure that is able to influence the normal physio-

logical NC during awake breathing(114).

NC and surgery
Every surgical procedure targeting turbinates may cause some 

effects on the NC(28,36,115). Submucosal diathermy has been 

reported to cause a reduction in NC amplitude which may be 

explained by the cauterization of the venous sinuses in the 

nasal submucosa(100,116); likewise Tatar reported that submucosal 

radiofrequency thermal ablation preserves the periodicity of 

the NC even though it decreases its amplitude(28). Therefore, 

partial turbinectomy may permanently damage the regulatory 

Table 2. Main pathologic conditions influencing nasal cycle.

Condition Effect Note

Acute upper respira-
tory tract infection

Unilateral nasal congestion usually increases 
with inflammation of the nasal mucosa(15).

Increase of the amplitude of the reciprocal changes(16).

Allergy Allergen provocation generally increases the 
amplitude of the nasal cycle(102).

The occurrence and the period of the nasal cycle are not altered(102).
Nasal response is still asymmetrical with the congested side before the 
challenge responding in most of cases with greater obstruction(104).

Nasal septal deviation No differences in terms of occurrence rate and 
mean duration of the nasal cycle(108).

The amplitude of the changes has been showed to be greater in the 
wider side(79,107).

OSAS - nCPAP influences the normal physiological nasal cycle during the 
awake breathing(114).
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mechanism for the presence of a turbulent airflow within the 

NC(117,118). Conversely, endoscopic sinus surgery has no adverse 

effects on the NC in terms of pattern of fluctuation, periodicity 

and amplitude(27).

NC has also been studied in laryngectomized patients and some 

authors reported that NC disappears after laryngectomy(119,120), 

while other did not find any difference with the control 

group(48,49).

NC and drugs
Nasal decongestants were shown to influence the NC. The 

administration of nasal topical vasoconstrictor on the congested 

side is able to cause a prompt cycle reversal(121). While it has 

been demonstrated that decongestants have little action on 

the patent side, they cause a significant increase in airflow on 

the naturally congested side with the least sympathetic nervous 

activity(122-125). After topical decongestants application, indepen-

dently from the pattern of NC, the effects last about 5-7 hours 

in healthy subjects, but only 3.5-6 hours in subjects with nasal 

pathology, probably due to the increased blood flow observed 

under inflammatory conditions(126,127). A recent study on intrana-

sal insulin formulation showed no influence on the NC(128).

Evaluation of the NC (Table 3)
The evaluation of the NC requires multiple measurements of na-

sal flow/patency over many hours. Several methods have been 

used including, among others(4,129-130), rhinomanometry (RM)(6), 

peak nasal inspiratory flow (PNIF)(30), AR(131) and, more recently, 

MRI(2). 

Subjective methods are not indicated to evaluate NC as the 

patients cannot recognize its alterations and about 17% of 

patients are unable to recognize the obstructed nasal side(132). 

However, each of these techniques has its drawbacks in terms 

of costs, time, reproducibility and patient' compliance. The main 

methods used for the NC evaluation are summarized in Table3.

RM has been standardized as a functional test and extended to 

describe changes of flows and NAR during the NC(36,92,118,133,134).

AR is a reproducible and non-invasive technique suitable for the 

objective assessment of the nasal airway, also in neonates(51,131) 

and in circumstances where airflow through the nose is abolis-

hed (i.e. after total laryngectomy)(48,49). 

PNIF is a cheap, reproducible and quick method for the ob-

jective assessment of nasal airway obstruction, also unilater-

ally(74,83,135). It has been recently showed that both PNIF and AAR 

are reliable methods in the evaluation of the NC with a lower 

variability in PNIF measurements(30). These methods provide only 

a momentary record of nasal function and do not offer long-

term assessment.

Keerl demonstrated the changes of the right and left inferior 

turbinate volume during a NC by means of a continuous endo-

scopically filmed-recording, using video sequences of approxi-

mately 30 seconds length in defined time intervals(136). 

Nasal remission spectroscopy allows single-side continuous 

monitoring of each side of the nose and has been used in the 

evaluation of the NC(137).

Long-term rhinoflowmetry offers the opportunity to assess 

bilateral nasal flow over a long period of time and is considered 

a valuable method to investigate long-term changes in the 

NC(120,138). A new portable device for relatively long-term rhinof-

lowmetry has also proved to be useful for observing the NC(139).

Daily variations in the nasal mucosal volume have also been eva-

luated by MRI. Although allowing a good evaluation of the nose, 

MRI is expensive and thus not useful in large scale studies(2). In 

this regard, computational fluid dynamics (CFD) technology has 

been applied to quantify nasal physiology and its use is increa-

sing. CT or MRI are necessary in order to capture the individual’s 

nasal anatomy. Three-dimensional digital models of the nasal 

passages are then created and, through numerical analysis and 

Table 3. Main methods used for the evaluation of nasal cycle.

Method Technique

Acoustic rhinometry Studies nasal geometry by means of reflected sound and gives information about cross sectional areas and 
nasal volumes within a given distance.

Anterior active rhinomanometry Measures the difference in trans-nasal pressure of the airflow through the nasal cavity. The resistance is ob-
tained from these measures by dividing pressure gradient by airflow. In active anterior rhinomanometry the 
airflow and pressure gradients are measured through the right and left nostril during a normal respiratory cycle 
only one nostril at a time.

Computational fluid dynamics Allows to simulate fluid (either liquid or gas) passing through or around an object with surfaces defined by 
boundary conditions. The operator can study all the aspects of the nasal airflow by modifying the thickness of 
the inferior and the middle turbinates, as well as that of the nasal septum. In this way it permits the prediction 
of fluid movement during different engorgement states of the nasal mucosa in the context of the nasal cycle.

Long-term rhinoflowmetry Assesses bilateral nasal flow over a long period of time. Investigates long-term changes of the nasal cycle.

Magnetic resonance imaging Studies volume changes of the mucosa within the nasal cavity and paranasal sinuses at different times of the 
nasal cycle.

Peak nasal inspiratory flow Evaluates nasal obstruction by measuring the maximal inspiratory flow through the nose.
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