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Efficacy of a seawater solution enriched with copper, 
hyaluronic acid and eucalyptus against nasal pathogens*

Abstract 
Background: Common cold is the most common disease which mainly affects the upper respiratory system. It is caused by viral 

or, in a small percentage, by bacterial infections. Current therapy options focus on symptomatic relief of the disease such as nasal 

saline irrigation, an easy-to-apply, comfortable, non-toxic method. In this study, a novel hypertonic seawater solution enriched 

with hyaluronic acids, eucalyptus oil, copper and manganese salts, Stérimar Stop & Protect Cold and Flu (SSPCF), has been investi-

gated with respect to efficacy against viral and microbial infections.

Methodology: An in vitro 3D reconstituted human nasal epithelium tissue model, MucilAir™, has been used in this study. Pre-

treatment and post-treatment anti-viral effects of SSPCF was measured through HRV-A16 viral load assays in order to evaluate 

the preventive and therapeutic efficacy of SSPCF, respectively. Anti-bacterial effects of SSPCF was assessed via Staphylococcus (S.) 

aureus growth inhibition and fluorescence bead-based phagocytosis assays.

Results: One-hour SSPCF treatment pre- or post-viral infection inhibited the viral replication up to 99.78 and 59.91%, respectively. 

S. aureus growth was completely eliminated (100%) in SSPCF treated tissues after 1 hour of treatment. Phagocytosis rate was 3.28 

folds higher in SSPCF treated tissue as compared to saline treated controls.

Conclusions: Under the conditions of this in vitro study, SSPCF appears effective against some species of rhinoviruses (as in com-

mon cold) and S. aureus in vitro.
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Introduction
Common cold (viral acute rhinosinusitis) is an upper respiratory 

tract infection which primarily affects the nasal respiratory mu-

cosa and mainly causes nasal blockage/obstruction/congestion 

for a duration of less than 10 days (1). Children and adults are 

estimated to suffer from up to 5 and 3 colds per year, respec-    

tively (2), which also causes time-off from school or work, trans-

lating to an economic and social burden (3). Rhinovirus infections 

are the main cause of common cold cases and lead to epithelial 

barrier dysfunction without causing cell death and enhance the 

invasion of bacteria which may cause bacterial superinfections (4-

6). When common cold symptoms worsen after 5 days or persist 

for more than ten days up to 12 weeks, the disease is called 

post-viral acute rhinosinusitis. A small subgroup of the post-

viral rhinosinusitis (estimated around 0.5-2.0%) (7) is caused by 

bacteria (mainly S. pneumoniae, H. influenzae, M. catarrhalis and 

S. aureus) to develop acute bacterial rhinosinusitis (1). 

Treatment options for common cold concentrate around 

symptomatic relief (8), among which, nasal irrigation (NI) with 
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saline solution is recommended as a safe, easy-to-use, comfort-

able and not-expensive method (9). In addition, NI has been 

shown to, at least partially, remove viruses and inflammatory 

mediators, and inhibit viral replication in the nasal cavities in 

upper respiratory tract infections (10). Saline NI applications also 

have been shown to decrease sinus medicine use in 35% of 

patients (11). Ragab et al. showed that there are no differences in 

nasal and total symptom scores of children with common cold 

who received saline NI combined with amoxicillin or placebo 

treatment. In the placebo group, children presented less adverse 

effects, suggesting that the saline NI alone (no antibiotic) is not 

only sufficient but also safer (12). Thus, improving the NI formula-

tions may improve the symptomatic relief outcomes with a bet-

ter safety profile and contribute to the decrease in the irrational 

use of medicinal products.

Hypertonic solutions are frequently used for NI and, due to their 

high salt concentration, were claimed to reduce oedema by 

draining water from surrounding tissues through diffusion of 

osmolar gradients (13), and have been shown to be effective in 

the elimination of nasal congestion in chronic rhinosinusitis (14). 

In addition, in vitro studies have shown that hypertonic saline 

solutions are safe to use on nasal tissues as they do not compro-

mise nasal epithelial integrity (15).

In this study, anti-viral and anti-bacterial properties of a hyper-

tonic seawater formulation (2.3% NaCl) enriched with hyaluronic 

acids, eucalyptus oil, copper and manganese salts, Stérimar Stop 

& Protect Cold and Flu (SSPCF), were tested in vitro. Additionally, 

the effect of the formulation on phagocytosis was evaluated.

Materials and Methods
Biological model (test system) used for the in vitro studies

The in vitro assays were performed in a 3D reconstituted human 

nasal epithelium model, MucilAir™ (Epithelix Sàrl, Geneva, 

Switzerland) for its great potential as a model to test respiratory 

sensitizers (16,17). For maintenance, inserts were incubated in 

500µl of MucilAir™ culture medium in a CO
2
 incubator (37ºC, 5% 

CO
2
, 100% humidity, Heracell).

Viral load assays

Replication of HRV-A16 has been previously shown to be suc- 

cessful in the MucilAir™ model in which the viral RNA load 

reaches a maximum in 24-48 hours after infection (18). In order to 

evaluate the effect of SSPCF on viral load, both pre- and post-

treatment approaches were followed.

Effect of treatment prior to HRV-A16 infection 

HRV-A16 virus stocks were prepared in HeLa Ohio and Vero cells 

as previously described (19). Prior to viral inoculation, tissues 

were treated 1 hour with saline (0.9%) (in triplicate) or SSPCF 

(n=3) or 5mM Rupintrivir (n=2, Santa Cruz Biotechnology Inc., 

Dallas, Texas, United States), a potent and irreversible inhibitor 

of human rhinovirus 3C protease (20). At 0h, tissues were apically 

inoculated with 100µl HRV-A16 (2.8x106 RNA copies /ml). After 

3.5 hours of incubation at 34ºC, supernatants were aspirated, 

and tissues were rinsed. 200µl of MucilAir™ culture medium 

was added for 20 minutes and the virus were harvested. The 

epithelia were further cultured at the air-liquid interface. At 24h, 

viral load was collected the same way. The viral load was quan-

tified with Entero/Ge/08 one-step real-time PCR as previously 

described (19,21).

Effect of treatment after HRV-A16 infection

At 0h, tissues were inoculated with 100µl of HRV-A16 viral sus-

pension (2.8x104 RNA copies /ml). Virus were rinsed out by 200µl 

of MucilAir™ culture media for 20 minutes. Tissues were treated 

with SSPCF (n=3) and 5000nM Rupintrivir (n=3) or saline (0.9%) 

(n=3) for 24h, and further incubated for 24 hours. Supernatants 

were lysed, and viral load was quantified. RNA was extracted 

with the QIAamp® (Qiagen, Hilden, Germany) Viral RNA Mini Kit. 

The extracted RNA was then quantified with the QuantiTect RT-

PCR kit (Qiagen, Hilden, Germany) by TaqMan ABI 7000 instru-

ment (Applied Biosystems, Waltham, MA, USA).

Bacterial assay

S. aureus (ATCC 6538) was thawed out and subcultured in TCS 

agar plates and then grown in suspension at 30-35ºC up to 

3.2x106 CFUs (calculated by OD
620

). SSPCF was added to the sus-

pension to a final concentration of 1%, to ensure minimal chan-

ges in growth characteristics. Incubations were then performed 

under rotary agitation (180 rotations/min) at 35°C. Monitoring 

was carried out at 0, 1, 3 and 24h of incubation by measuring 

the bacterial density (calculated as CFU/ml). As negative control, 

untreated samples (growth medium) was used. 

Phagocytosis assay

To evaluate whether SSPCF can induce phagocytic activity, 

tissues were treated for 1 hour with control (saline solution) or 

SSPCF, containing-FITC coupled latex beads. A volume of 100µl 

of rabbit IgG-FITC conjugated-coated latex beads (1:10 saline 

dilution) (Phagocytosis assay kit, Cayman Chemical Company, 

Ann Arbor, MI, USA) were added to tissues and incubated in 

30µl of saline or SSPCF in 24-well plates. Tissues were incubated 

for 1 hour for 37ºC. 50µl of Trypan Blue solution were added 

and plates were incubated at RT for 2 min to quench FITC 

fluorescence of non-internalized beads. Excess Trypan Blue was 

aspirated, and fluorescence intensity of the cells was measured 

(485nm/535nm). Cells were also analysed in an inverted fluo-

rescent microscope (Leica DM IL LED FLUO, Wetzlar, Germany) 

equipped with filters (485nm/535nm) after supernatant aspira-

tion.
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Results
Effect on viral replication 

Results of 1-hour SSPCF pre-treatment before HRV-A16 infection 

showed that viral replication was almost completely inhibited in 

this sample as compared to saline-treated control (99.78% inhi-

bition, 2.05x107 vs 4.50x104, respectively (Figure 1A). The effect 

of SSPCF was similar to the effect of rupintrivir.

Results of the post-infection treatment (24 hours after infection) 

showed that 24 hours of treatment (48 hours after infection) 

decreased the viral load compared to saline-treated control, 

reaching up to 60% inhibition (6.73x108 vs. 2.70x108 copies RNA/

ml) (Figure 1B).

Effect on bacterial growth

The efficacy of SSPCF against S. aureus was tested by monitor-

ing of bacterial growth at 1, 3 and 24 hours after treatment. As 

shown in Figure 2, treatment with SSPCF has an anti-bacterial 

effect compared to untreated control (growth medium). Starting 

from as early as one hour after treatment the S. aureus colony 

forming unit counts decreased from over 1.0x106 to 0 and is 

maintained throughout the course of the experiment (24h). 

Effect on the phagocytic activity of nasal epithelial cells

Figure 3A presents fluorescent micrographs of cells derived from 

SSPCF or saline pre-treated tissues incubated with fluorescent 

beads. Tissues treated with SSPCF engulfed more beads indi-

cating an increased phagocytotic activity compared to saline 

control. The quantification of fluorescence intensity revealed 

that the increase was more than 3-fold (Figure 3B, p<0.001).

Discussion
The present study aimed to test the efficacy of a hypertonic 

seawater solution enriched with hyaluronic acids, eucalyptus oil 

as well as copper and manganese salts against pathogens such 

as human rhinovirus which are known to cause common cold 
(4,5) and S. aureus which is an important pathogen in respiratory 

infections (22), in an in vitro model of reconstituted human nasal 

epithelium. Manganese has been shown to inhibit the anaphy-

lactic histamine release (23) and reduces inflammatory response 
(24). Hyaluronic acid increases tissue hydration and shortens 

healing time (25,26). 

The model used in this study, MucilAir™ is composed of basal 

cells, ciliated cells and mucus cells in a proportion similar to 

what one observes in vivo (27). Moreover, MucilAir™ is functionally 

differentiated, conserves tissue integrity (TEER>200 W.cm2) and 

also secretes mucus. The activity of the main epithelial ionic 

channels, such as CFTR, EnaC, Na/K ATPase, is preserved and the 

epithelia is shown to respond in a regulated and vectorial man-

ner to the pro-inflammatory stimulus, TNF-a (27). A large panel of 

Figure 2. Efficacy of SSPCF against S. aureus growth. Chart shows the 

bacterial growth in suspensions incubated with or without (growth 

control) 1% of SSPCF at 0h (incubation start point), 1h, 3h and 24h post 

treatment.

Figure 1. Effect of SSPCF on viral load (A) before HRV-A16 infection and (B) after HRV-A16 infection. *p ≤ 0.05 compared to saline control.
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cytokines, chemokines and metalloproteinases has been detect-

ed in MucilAir™ tissues (e.g. IL-8, IL-6, GM-CSF, MMP-9, GRO-a). 

Most importantly, MucilAir™ replicates the main function of 

the airway epithelial cells, the mucociliary clearance driven by 

synchronized cilia-beating, and has been successfully used for 

acute, long-term and chronic in vitro studies (16, 17, 28, 29). Given that 

MucilAir™ is functionally robust and successfully mimics human 

nasal epithelium, it is important to conduct a clinical trial with 

SSPCF in order to demonstrate the safety and efficacy of it in in 

vivo settings.

At the performance level, treatment with SSPCF prior to HRV-

A16 infection reduced viral load compared to saline-treated 

cells (almost 100%), as measured by viral RNA copy numbers, 

indicating the inhibition of rhinovirus replication. The reduction 

was similar to the one caused by treatment with rupintrivir, a 

well-known viral protease inhibitor (20). 60% viral replication inhi-

bition was also observed when treatment was performed after 

viral infection. Therefore, SSPCF has a prophylactic effect against 

HRV-A16 and is also effective when used post-infection (~100% 

and 60% inhibition, respectively).

In addition, efficacy of SSPCF in control of bacterial growth was 

also assessed. The results in Figure 1 show that, as early as 1 

hour after treatment, SSPCF exerted anti-bacterial effect on S. 

aureus growth (complete inhibition), compared to untreated 

control cultures.

Respiratory epithelial cells orchestrate the immune defense 

response against incoming toxins and pathogens. Pathogen 

recognition pathways in epithelial cells can stimulate phagocy-

tosis (30). An increase in phagocytic activity was also observed 

upon treatment with SSPCF compared to treatment with saline 

solution. The performed assay employed IgG-FITC conjugated 

latex beads. It would be interesting to investigate whether there 

is an increase in phagocytosis of HRV-A16 or S. aureus via live 

cell imaging to confirm that the increase in phagocytic activity 

shown with fluorescent beads is contributing to an antimicro-

bial effect. Others have previously shown that primary nasal 

epithelial cells cultured in vitro in an air-liquid interface similar 

to the MucilAir™ model, are able to phagocyte other pathogens 

such as Aspergillus fumigatus (31).

Upon colonizing the nose, S. aureus competes with the bacteria 

of the nasal microflora and has been shown to form a biofilm 

enabling other bacteria species to grow (32). Biofilms provide bac-

teria with a protective environment against host defense which 

may lead to chronic diseases such as chronic rhinosinusitis (33). In 

this regard, topical irrigation treatments, including nasal saline 

irrigation, have been shown to be effective in the elimination 

of biofilms both in animal and human chronic rhinosinusitis 

models as reviewed recently (34). Therefore, the prevention of 

bacterial growth demonstrated in this in vitro study may be due 

to the partial or complete elimination of biofilm, or the preven-

tion of its formation.

Conclusions
Overall, results of the present study support that in vitro, SSPCF 

is able to inhibit HRV-A16 replication and S. aureus growth, and 

SSPCF is effective in protecting the nasal epithelial tissues from 

viral and bacterial pathogens. In vitro tests presented in this 

study suggest that SSPCF has (i) an inhibitory effect on viral 

replication when applied pre- or post-infection by HRV A16, 

(ii) anti-bacterial effect on S. aureus; and (iii) phagocytosis-en-

hancing effect that could be useful against viruses and bacteria 

involved in common cold. Safety and efficacy evaluation of 

SSPCF in the clinical settings is needed to prove the beneficial 

effects of the formulation at the clinical level.

Figure 3. Phagocytic activity after SSPCF pre-treatment. A, Representative fluorescent images of cells derived from MucilAir™ tissues with internalized 

fluorescent beads after 1-hour treatment.  B, Quantification of data in (A). ***p < 0.001 compared to saline control.
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